5,275 research outputs found

    Novel electronic and magnetic properties of BN sheet decorated with hydrogen and fluorine

    Get PDF
    First principles calculations based on density functional theory reveal some unusual properties of BN sheet functionalized with hydrogen and fluorine. These properties differ from those of similarly functionalized graphene even though both share the same honeycomb structure. (1) Unlike graphene which undergoes a metal to insulator transition when fully hydrogenated, the band gap of the BN sheet significantly narrows when fully saturated with hydrogen. Furthermore, the band gap of the BN sheet can be tuned from 4.7 eV to 0.6 eV and the system can be a direct or an indirect semiconductor or even a half-metal depending upon surface coverage. (2) Unlike graphene, BN sheet has hetero-atomic composition, when co-decorated with H and F, it can lead to anisotropic structures with rich electronic and magnetic properties. (3) Unlike graphene, BN sheets can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. (4) The stability of magnetic coupling of functionalized BN sheet can be further modulated by applying external strain. Our study highlights the potential of functionalized BN sheets for novel applications.Comment: 18 pages, 6 figures, and 1 tabl

    Bis[2-(3,4-disulfanylphen­yl)acetato]bis­(2-methyl-1H-imidazole-κN 3)zinc(II)

    Get PDF
    In the title mononuclear zinc(II) complex, [Zn(C8H7O2S2)2(C4H6N2)2], the ZnII atom, lying on a twofold axis, is coordinated by two O atoms from two 2-(3,4-disulfanylphen­yl)acetate anions and by two N atoms from 2-methyl­imidazole ligands in a distorted tetra­hdral coordination. The crystal structure is stabilized by inter­molecular C—H⋯O and N—H⋯O hydrogen bonds and π–π inter­actions with a centroid–centroid distance of 3.6136 (16) Å

    Competing orders and inter-layer tunnelling in cuprate superconductors: A finite temperature Landau theory

    Full text link
    We propose a finite temperature Landau theory that describes competing orders and interlayer tunneling in cuprate superconductors as an important extension to a corresponding theory at zero temperature [Nature {\bf 428}, 53 (2004)], where the superconducting transition temperature TcT_c is defined in three possible ways as a function of the zero temperature order parameter. For given parameters, our theory determines TcT_c without any ambiguity. In mono- and double-layer systems we discuss the relation between zero temperature order parameter and the associated transition temperature in the presence of competing orders, and draw a connection to the puzzling experimental fact that the pseudo-gap temperature is much higher than the corresponding energy scale near optimum doping. Applying the theory to multi-layer systems, we calculate the layer-number dependence of TcT_c. In a reasonable parameter space the result turns out to be in agreement with experiments.Comment: 5 pages, 3 figure
    corecore